Mutual information based registration of multimodal stereo videos for person tracking
نویسندگان
چکیده
Research presented in this paper deals with the systematic examination, development, and evaluation of a novel multimodal registration approach that can perform accurately and robustly for relatively close range surveillance applications. An analysis of multimodal image registration gives insight into the limitations of assumptions made in current approaches and motivates the methodology of the developed algorithm. Using calibrated stereo imagery, we employ maximization of mutual information in sliding correspondence windows that inform a disparity voting algorithm to demonstrate successful registration of objects in color and thermal imagery. Extensive evaluation of scenes with multiple objects at different depths and levels of occlusion shows high rates of successful registration. Ground truth experiments demonstrate the utility of the disparity voting techniques for multimodal registration by yielding qualitative and quantitative results that outperform approaches that do not consider occlusions. A basic framework for multimodal stereo tracking is investigated and promising experimental studies show the viability of using registration disparity estimates as a tracking feature. 2007 Elsevier Inc. All rights reserved.
منابع مشابه
Local self-similarity-based registration of human ROIs in pairs of stereo thermal-visible videos
For several years, mutual information (MI) has been the classic multimodal similarity measure. The robustness of MI is closely restricted by the choice of MI window sizes. For unsupervised human monitoring applications, obtaining appropriate MI window sizes for computing MI in videos with multiple people in different sizes and different levels of occlusion is problematic. In this work, we apply...
متن کاملRegistering Multimodal Imagery with Occluding Objects Using Mutual Information: Application to Stereo Tracking of Humans
This chapter introduces and analyzes a method for registering multimodal images with occluding objects in the scene. An analysis of multimodal image registration gives insight into the limitations of assumptions made in current approaches and motivates the methodology of the developed algorithm. Using calibrated stereo imagery, we use maximization of mutual information in sliding correspondence...
متن کاملOptimized co-registration method of Spinal cord MR Neuroimaging data analysis and application for generating multi-parameter maps
Introduction: The purpose of multimodal and co-registration In MR Neuroimaging is to fuse two or more sets images (T1, T2, fMRI, DTI, pMRI, …) for combining the different information into a composite correlated data set in order to visualization, re-alignment and generating transform to functional Matrix. Multimodal registration and motion correction in spinal cord MR Neuroimag...
متن کاملA Novel Subsampling Method for 3D Multimodality Medical Image Registration Based on Mutual Information
Mutual information (MI) is a widely used similarity metric for multimodality image registration. However, it involves an extremely high computational time especially when it is applied to volume images. Moreover, its robustness is affected by existence of local maxima. The multi-resolution pyramid approaches have been proposed to speed up the registration process and increase the accuracy of th...
متن کاملRegistration of Multimodal Imagery with Occluding Objects using Mutual Information
In this paper we introduce and analyze a method for registering multimodal images with occluding objects in the scene. An analysis of multimodal image registration gives insight into the limitations of assumptions made in current approaches and motivates the methodology of the developed algorithm. Using calibrated stereo imagery, we use maximization of mutual information in sliding corresponden...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Vision and Image Understanding
دوره 106 شماره
صفحات -
تاریخ انتشار 2007